

Dynamic Selection of Three-Dimensional Interface Patterns in Directional Solidification

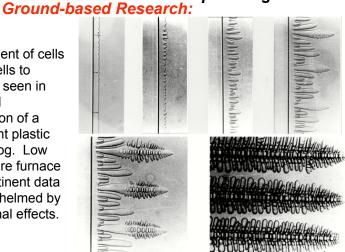
U.S. PI: Prof. Rohit Trivedi, Iowa State University University ESA Team Coordinator: Dr. B. Billia. Université Paul Cézanne. Marseille, France

Objective:

- Understanding of dendrite evolution has been dramatically increased by microgravity experiments, principally in undercooled pure materials
- Understand the dynamics that lead to uniform and reproducible threedimensional pattern formation in materials, particularly alloys
- Obtain benchmark data required for establishing the detailed dynamics of interface pattern selection during the solidification of alloys
- A fundamental understanding of interface dynamics is central to tailor microstructures to optimize materials properties

Relevance/Impact:

- Many industrial applications involve directional solidification
- Pattern formation is vital for controlling microstructure during solidification of high temperature, high strength, complex alloys, and in welding and other molten metal forms of joining
- Applicable to cryofreezing of biological system (e.g. blood) where homogeneity is necessary. There are implications for human exploration missions.


Development Approach:

- Transparent alloy of succinonitrile will be used as an analog of metallic allovs
- Sample will be observed by microscopy, interferometry with a resolution of 5 microns with a sampling rate – up to 25Hz
- Samples can be re-run at various solidification rates and with various temperature gradients. US PI will select his own experimental conditions.

DECLIC - Dispositif pour l'Etude de la Croissance et des Liquide Critiques. Accommodation will be CNES's DECLIC equipment housed within an EXPRESS rack. DSI, Directional Solidification Inert will be used.

Marshall Space Flight Center

Development of cells to deep cells to dendrites, seen in directional solidification of a transparent plastic alloy analog. Low temperature furnace used. Pertinent data are overwhelmed by gravitational effects.

ISS Resource Requirements

Accommodation (carrier)	DECLIC
Upmass (kg) (w/o packing factor)	0 (zero) for samples (shipped with DECLIC
Volume (m³) (w/o packing factor)	10e-8
Power (kw) (peak)	TBD
Crew Time (hrs) (installation/operations)	4
Autonomous Operation	TBD
Launch/Increment	TBD

Project Life Cycle Schedule

Milestones	SCR	RDR	PDR	CDR	VRR	Safety	FHA	Launch	Ops	Return	Final Report
Actual/ Baseline	11/03							06/09			
								1/A			